The stable homotopy theory of vortices on Riemann surfaces
نویسنده
چکیده
The purpose of these notes is to show that the methods introduced by Bauer and Furuta, see [5, 6, 7], in order to refine the Seiberg-Witten invariants of smooth 4-dimensional manifolds can also be used to obtain stable homotopy classes from 2-dimensional manifolds, using the vortex equations on the latter. So far these notes contain barely more than the necessary analytic estimates to prove this. The implications and applications will be added as time permits. In this section we review the necessary background material on connections on line bundles on Riemann surfaces. Let X be a closed oriented connected surface with a Riemann metric. The Hodge star operator on 1-forms induces a complex structure on X. This structure is inte-grable, so that X is a complex curve. The metric on X is automatically Kähler, and the Kähler form ω agrees with the volume form.
منابع مشابه
Universal moduli spaces of surfaces with flat bundles and cobordism theory
For a compact, connected Lie group G, we study the moduli of pairs (Σ,E), where Σ is a genus g Riemann surface and E →Σ is a flat G-bundle. Varying both the Riemann surface Σ and the flat bundle leads to a moduli space Mg , parametrizing families Riemann surfaces with flat G-bundles. We show that there is a stable range in which the homology of Mg is independent of g. The stable range depends o...
متن کاملUniversal moduli spaces of surfaces with flat connections and cobordism theory
Given a semisimple, compact, connected Lie group G with complexification Gc, we show there is a stable range in the homotopy type of the universal moduli space of flat connections on a principal G-bundle on a closed Riemann surface, and equivalently, the universal moduli space of semistable holomorphic Gc-bundles. The stable range depends on the genus of the surface. We then identify the homolo...
متن کاملA Remark on the Virtual Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces
Inspired by his vanishing results of tautological classes and by Harer’s computation of the virtual cohomological dimension of the mapping class group, Looijenga conjectured that the moduli space of smooth Riemann surfaces admits a stratification by affine subsets with a certain number of layers. Similarly, Roth and Vakil extended the conjecture to the moduli spaces of Riemann surfaces of compa...
متن کاملString Backgrounds and Homotopy Algebras
String backgrounds are described as purely geometric objects related to moduli spaces of Riemann surfaces, in the spirit of Segal’s definition of a conformal field theory. Relations with conformal field theory, topological field theory and topological gravity are studied. For each field theory, an algebraic counterpart, the (homotopy) algebra satisfied by the tree level correlators, is construc...
متن کاملN ov 2 00 8 Homological Stability Among Moduli Spaces of Holomorphic Curves in C P
The primary goal of this paper is to find a homotopy theoretic approximation to Mg(CP ), the moduli space of degree d holomorphic maps of genus g Riemann surfaces into CP. There is a similar treatment of a partial compactification of Mg(CP ) of irreducible stable maps in the sense of Gromov-Witten theory. The arguments follow those from a paper of G. Segal ([Seg79]) on the topology of the space...
متن کامل